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SDP-based Identification Scheme

I Public: Positive integers q, n, k ,w , and an (n − k)× n matrix H over Fq.

I Private Key: s ∈ Fn
q, wt(s) ≤ w/2.

I Publkic Key: S = Hs.

Prover Verifier
Choose y ∈ Fn

q,
wt(y) ≤ w/2.

Set Y := Hy .
Y−→
c←− Choose c ∈ Fq \ {0}

z := y + cs
z−→ Accept if Hz = Y + cS

and wt(z) ≤ w .



Fiat-Shamir transform

I Eliminate extra pass: challenge from Verifier.

I Commitment: Y = Hy

I Challenge c = H(M||Y ) for message M and some hash function H.

I Proceed as in Identification Scheme.

I Signature = (Y , z), or (H(Y ), z).



Vulnerability

I For reasons to be discussed later, w should be chosen small.

I This means that y is biased towards 0, and therefore so is c−1y .

I Attack: Generate lots of signatures, and use statistical analysis on
c−1i zi = c−1i yi + s to determine s.



Solution: Ring

I Use lattice-based cryptography.

I Let R := F2[x ]/(xp + 1).

I Use multiplication in R rather than by a scalar, because this will change the
weight of (and generally scramble) c−1y .



Cyclic Identification Scheme

I Public: Positive integers p,w ,w1,w2, δ, and h ∈ R and hash function H.

I Private Key: s = (s0, s1) ∈ R×R of weight w1.

I Publkic Key: S = s0 + s1h.

Prover Verifier
Choose y = (y0, y1) ∈ R×R
of weight w2.
Set Y := y0 + y1h.

Set K := H(Y ).
K−→
c←− Choose c ∈ R invertible,

wt(c) ≤ δ.

z := y + cs
z−→ Accept if H(z0 + z1h + cS) = K

and wt(z) ≤ w .



Notes on the Cyclic Identification Scheme

I Use the Fiat-Shamir Transform to make this into a signature.

I Observe that this does not need to be resistant to a malicious Verifier in the
challenge phase.

I wt(z) ≤ w2 + δw1 =: w .

I If w is sufficiently small, then z is unique.

I Lyubashevsky points to collision resistance in [5], but Persichetti uses the
Gilbert-Varshamov bound from coding theory.

I For base 2 and an [n, k]-code, this bound is the largest d such that

d−1∑
i=0

(
n

i

)
≤ 2n−k .



Connection to Coding Theory

I A cyclic code is a linear code closed under circular shifts.

I The generator and parity-check matrices are circulant.

I This code can be identified with an ideal in the ring Fq[x ]/(xn − 1).

I A quasi-cyclic code is a linear code closed under right circular shifts by some fixed
n0 number of places.

I An [n, k] quasi-cyclic code where n = n0p has both generator and parity check
matrices in the following form: a block matrix of n0 p × p blocks.

I This corresponds to elements of Rn0 , where R = Fq[x ]/(xp − 1).



Quasi-cyclic Syndrome Decoding Problem

I (QC-SDP) Given h, S ∈ R, find e0, e1 ∈ R such that e0 + e1h = S .

I This is NP complete∗.

I If the Cyclic Identification Scheme is vulnerable to an active attack, then so is
QC-SDP.



Proof Outline

I Let (h∗, S∗,w∗) be an instance of QC-DSP.

I Forge identity: (K ′, z ′) with public key S∗, private key of weight w∗ = w1,
wt(z ′) ≤ w = w2 + δw1.

I Since this signature is correctly validated, we must have H(z ′0 + z ′1h
∗+ cS∗) = K ′.

I Since K ′ was chosen before c , this means that we must have computed the
correct preimage y0 + y1h.

I Therefore, we have z ′0 + z ′1h + cs∗0 + cs∗1h = y0 + y1h.

I Regrouping, z ′0 + z ′1h = (y0 + cs∗0 ) + (y1 + cs∗1 )h.

I If wt(y) ≤ w2 and wt(c) ≤ δ with w = w2 + δw1 below the GV bound, then by
uniqueness, z ′ = y + cs.

I Using the same y0 + y1h, forge the signature for another message to produce
z ′′ = y + c ′′s∗.

I Repeat until c + c ′′ is invertible, and then s∗ = (c + c ′′)−1(z ′ + z ′′).



Parameters

p w1 w2 δ Security (log) Signature Size (bits) Public Data (bits)

4801 90 100 10 80 9602 + `F 9602
9857 150 200 12 128 19714 +`F 19714
3072 85 85 7 80 6144 +`F 6144
6272 125 125 10 128 12544 +`F 12544

`F = length of hash output. Table from [3]



Other zero-knowledge identification schemes

Stern 3 Stern 5 Véron CVE AGS

Rounds 28 16 28 16 18
Public Data 122500 122500 122500 32768 350
Private Key 700 4900 1050 1024 700
Public Key 350 2450 700 512 700

Total Communication Cost 42019 62272 35486 31888 20080

Table from [3].

I All values in bits.

I The values above correspond to a cheating probability of 2−16. Multiply values by
5 for a probability of 2−80.

I For AGS, the signature size is 93 Kb, compared with 6 Kb for this proposal.



*

I Transform the k0p× n0p parity check matrix into a block matrix with p2 blocks of
size k0 × n0:

A =

A11 A12 . . . A1p
...

...
Ap1 Ap2 . . . App

 .

I In the case where p = 2, if A11 = H and A12 = 0, we can use the QC-SDP to
solve: (

H 0
0 H

)(
e
e

)
=

(
z
z

)
.

I Therefore we can solve the general syndrome decoding problem He = z .

I But if n0 and k0 are small, then the general syndrome decoding problem is easy.



Fiat-Shamir with Aborts

I Lyubashevsky had almost the same idea for a signature in 2009, see [4].

I There, q is larger, and he starts with small vectors and aborts if z is too large (so
as not to leak information about s).

I He has a security proof that this is at least as secure as SVPγ for a cyclic lattice.
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Questions?


